SPICA – a joint infrared space observatory
Mission overview and status

Peter Roelfsema
SAFARI Principal Investigator
SPICA Collaboration lead
SPICA Science Study Team lead

Netherlands Institute for Space Research
Netherlands Organisation for Scientific Research
Overview

• **The goal – a big cold IR facility; SPICA**
 • ...a long and winding gestation process
 • Now under development as a joint ESA(M5)-JAXA mission

• **SPICA – mission overview**
 • M5 mission concept
 • The M5 context – ‘we are not alone’
 • Updates already in the pipeline...
 • Instruments, capabilities
 • Next steps towards selection in 2021

• **SPICA science**
 • The ‘core’ and mission driving science
 • ...examples of what we can, and will do
...SPICA’s long history

- 1995-2000 Japanese HII/L2 project
- 2007 – M-class JAXA mission with ESA telescope
- 2010 – HIIB to HIIA launcher → smaller telescope
- 2011/2012 – ‘Risk Mitigation Phase’
 - Too big for Japan alone → ESA partnership needs to increase → M4 mission?
- 2014 – ESA/JAXA consider SPICA not viable under M4
 - Late 2014 – joint JAXA/ESA CDF study → M5 concept, but a (too) ‘small’ mirror
 - Mission lead moves from Japan to Europe
- 2015 – viable concept with 2.5m telescope/SAFARI-grating
- 2016 – M5 mission proposal submitted
- 2017 – delays in M5 decision process... project in a ‘holding pattern’
- 2018 - ESA/M5 candidate mission
 - 2019 – Phase-A study underway
 - 2021 – mission selection
...SPICA’s long history of ups and downs
A collaboration with long history

- Most day-1 partners are still on-board
- Very motivated and enthusiastic partners
- Most have ‘space experience’
- Continuous remote interaction
- Bi-annual collaboration meetings
The SPICA ‘sweet spot’ – the dusty universe

A unique observatory
looking through the veils, enabling
transformational science

...imagine going
a factor 100+ deeper
than Hershel!

What is so unique?

• A **COLD, big** mirror
 → true **background limited** Mid/Far-IR observing

• ~20 to ~350 μm **inaccessible** for any other observatory
 → the wavelength domain where obscured matter shines
 fill the blind spot between JWST and ALMA @ R~ few 1000
SPICA sensitivity/speed – a huge leap forward

Raw sensitivity improvement >2 orders of magnitude
Instantaneous full spectra → huge step in efficiency
The SPICA mission configuration
SPICA – the basic concept for M5

- ‘PLANCK configuration’
 - Size - Φ4.5 m x 5.3 m
 - Mass - 3450 kg (wet, with margin)
 - Mechanical coolers, V-grooves

- 2.5 meter telescope, < 8K
 - Warm launch

- 12 - 230 μm spectroscopy
 - FIR spectroscopy – SAFARI
 - MIR imaging spectroscopy – SMI
 - FIR polarimetry – B-BOP

- ‘standard’ Herschel/Planck SVM
- Japanese H3 launcher, L2 halo orbit
- 5 year goal lifetime

...phase 0 showed this is not a trivial goal
Telescope – monolithic 2.5m Ritchy-Chrétien

Herschel heritage
• Preliminary design from ESA/industry studies
 • 20 µm diffraction limited performance
 • M1: 2.5m F/1, M2: ~0.6m, M1-M2 ~2m

Conceivable (?) alternate configuration: off-axis
• Potential for larger area/margin
• Optics more challenging
 ...but SPICA is primarily spectroscopy
• ...might be looked into
Cryogenics to cool telescope and instruments

- Active cooling to 4K and 1.7K
 - Detector modules at 50mK with dedicated mK coolers (SAFARI, B-BOP)
- V-grooves – passive cooling to 40K
- Detachable support struts
The SPICA project

- Joint ESA-JAXA project
 - ESA overall responsibility
 - JAXA major partner
 ...instruments also significant partner
 - Challenging organization
 - Total mission cost ~ 1Bn€
Observatory harvesting and governance

- **Observing time:**

 mission will be open for *all astronomers*

 - Guaranteed v.s. open time details TBD
 - Detailed implementation of e.g. ‘Key projects’ TBD
 - Time Allocation Committee

- **International mission → international oversight/cooperation**

 - SPICA Science Study Team (ESA installed) – represent science community
 - SPICA collaboration ≡ 3 instrument consortia + overall SPICA (science) consortium
 - Later; Science advisory committee, SPICA executive board
Heritage – Herschel and Planck taught us well

Examples of heritage being put to good use:

- **H/W**
 - Telescope
 - Cryo configuration with V-grooves
 - SVM elements
 - INAF as common instrument control unit supplier
 - Instrument cooler concepts

- **Operations**
 - Autonomous operations
 - Distributed ground segment
 - Likely; science operations concepts and possibly even tools

- **Experience**
 - ...the same faces all over the place
M5 – plans and progress
The M5 competition

- **SPICA**

- **Envision (UK)**
 - Why did Earth and Venus evolve so differently?

- **THESEUS (Italy)**
 - How did the Universe begin and what is it made of?
 - Complete census of the Gamma-Ray Burst (GRB) population in the Early Universe

...in principle all are equally strong candidates

...and in the US there is OST
 - Regular, good contact between SPICA and OST
Evaluation/evolution of SPICA in Phase 0/A

Main conclusion – overall a valid proposition

- It fits... however, Mass is a worry \(\rightarrow \) track that carefully in Phase A
- It fits... however, downlink requires (planned) upgrades (QPSK or 8PSK /SCCC)
- Cannot do small Lissajous L2 orbit \(\rightarrow \) large halo – more “earth-constraint”
- Cryogenics Module/SVM configuration being optimized – weight/thermal
SPICA Science Study Team

Establish/maintain SPICA science drivers and requirements

- **Represents full science community**
 - Europe: Elbaz, Griffin, Kamp, Martin-Pintado, Spinoglio
 - Japan: Honda, Kotaro, Nagao, Nomura
 - PI’s: Kaneda, Roelfsema (chair), Sauvage
 - ESA/JAXA study scientists: Tauber, Onaka

- **Outputs**
 - Now: SPICA science requirements document (for ITT)
 - For mission selection: **SPICA Yellow Book**

- **Five topical science work groups → open for participation**
 - PPD’s, galaxy evolution, nearby galaxies, ISM, solar system
 - Science (cases) to be documented in set of ‘white’ papers

- Meetings; October, January, next one in June
Next steps – the schedule

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Definition Review (MDR)</td>
<td>21/11/2018</td>
<td>Check readiness for Phase A</td>
</tr>
<tr>
<td>Phase A ind. ITT</td>
<td>Jan. 2019</td>
<td></td>
</tr>
<tr>
<td>Phase A ind. KO</td>
<td>June 2019</td>
<td></td>
</tr>
<tr>
<td>Phase A Mission Consolidation Review (MCR)</td>
<td>June 2020</td>
<td>Close Mission and System-level trade-offs</td>
</tr>
<tr>
<td></td>
<td>(TBC)</td>
<td></td>
</tr>
<tr>
<td>Release Yellow book</td>
<td>Apr. 2021</td>
<td>Provide to Selection advisory board</td>
</tr>
<tr>
<td>Mission Selection Review (MSR)</td>
<td>Apr. 2021</td>
<td>Technical/programmatic part. Confirm mission is within M5 boundaries</td>
</tr>
</tbody>
</table>

Next real review: MCR
~ MSR dress rehearsal (...or turkey shoot?!?)

MSR documents deadline:
~February 2021!!
The SPICA Instruments
SAFARI – evolution dictated by science

Original design: Imaging Fourier Transform Spectrometer
- Fast/efficient large area spectroscopic mapping
 ...but fundamentally limited in maximum sensitivity due to photon noise

SAFARI V2.0: highly sensitive grating spectrometer
- Basic R~300 mode \rightarrow 1hr/5σ $-5-7\times10^{-20} \text{ W/m}^2$ (4.6 m2)
 Will improve with (likely) better TES performance
- Martin Puplett Interferometer to provide R~3000 mode
- 4 bands covering 35-230 micron
 limited imaging capability: 3 pixels on-sky
- Critical technologies in very good shape
 - **Detectors:** goal sensitivity achieved
 - FDM 176pix/channel achieved
 - **FTS mechanism** close to TRL4
 - **Cooler** EM built and tested
 With Japanese coolers: ~SPICA-ATHENA synergy
TES NEP - SAFARI requirement within reach

- SAFARI stated requirement: $\sim 2 \times 10^{-19}$ W/$\sqrt{\text{Hz}}$
- Ongoing TES research: achieve best possible device layout
 - Working towards larger array sizes
 - Production process
 - Optical characterization

![Graph showing NEP values](image)

NEP = 1-2 10^{-19} W/$\sqrt{\text{Hz}}

SIN legs: 350 μm x 0.5 μm x 0.25 μm

SIN Island: 220 μm x 280 μm x 0.25 μm

Absorber: Ta 8 nm, 200 μm x 200 μm

Thermometer: Ti/Au 16/65 nm 50 μm x 50 μm

Small island
- $T_c = 94$ mK
- $P = 1$ fW @50mK
- $G = 30$ fW/K

Large island
- $T_c = 93$ mK
- $P = 2.0$ fW @50mK
- $G = 60$ fW/K

1.5$ x 10^{-19} W/$\sqrt{\text{Hz}}

1.1$ x 10^{-19} W/$\sqrt{\text{Hz}}

Meet the SAFARI noise requirement
Cooler – Frequency Domain Multiplexing

- Cooler EM built and tested, also with JAXA coolers
- FDM 176 pix/channel demonstrated
 - Requirement: 160 pix/channel
High Resolution - Martin-Puplett interferometer

- Mechanism as in original SAFARI concept
- Sensitivity factor of ~2 below R=300 mode
- Compact layout achieves R~11000-2000
- Development by ABB (Canada)
 - ‘EM’ unit already fabricated
 → cryogenic tests; e.g. metrology achieves ~15nm

SAFARI V1.0 concept

Current concept

ABB proprietary
The Mid-infrared Instrument SMI

- **SMI/LR-CAM** – large area low resolution surveyor
 - 17 – 36 μm, R = 50 – 120
 - 4 slits (10’ long) with prism
 - Detector: Si:Sb
 - Camera mode 10’x12’ FoV

- **SMI/MR** – medium resolution mapper
 - 18 – 36 μm, R = 1200 – 2300,
 - 1 slit (1’ long) with grating
 - Detector: Si:Sb

- **SMI/HR** – molecular physics/kinematics
 - 12 – 18 μm, R = 28,000
 - 1 slit (4” long) with immersion grating
 - Detector: Si:As

- Japanese consortium
 - PI: H. Kaneda/Nagoya U., ISAS
SMI functional block diagram

- **Telescope focus**
 - Beam-steering mirror
 - Fore optics

- **Rear optics**
 - LR multi-slit
 - Prism
 - 34μm band (fixed)

HR slit
- Immersion grating
- R~28000
- Si:As 1K x 1K
- **HR** 12 – 18 μm

MR slit
- Grating
- R~1500
- Si:Sb 1K x 1K
- **MR** 18 – 36 μm

Pick-up

LR slit
- Si:Sb 1K x 1K
- **LR** 17 – 36 μm

CAM 34 μm

SMI / LR-CAM: Multi-slit prism + Si:Sb w/ 10’x12’ slit viewer
- 17 – 36 μm, R = 50 – 120, slit:10’ long, 4 slits

SMI / MR: Grating + Si:Sb w/ beam-steering mirror
- 18 – 36 μm, R = 1200 – 2300, slit: 1’ long

SMI / HR: Immersion grating + Si:As w/ beam-steering mirror
- 12 – 18 μm, R = 28,000, slit: 4” long
SMI optical layout

Ongoing work:
- Detector development
- Going from refractive to reflective optics
Observing with SMI

Slit viewer

For large area surveys. Telescope scan with 90 steps (1 step length = 2” \(\sim 0.5 \times \text{slit width}\)) produces a spectral map and a 34 \(\mu\text{m}\) broad-band image of 10’ \(\times\) 12’ area, *simultaneously*.

1-D Beam-steering mirror

For spectral mapping of small areas. e.g., covering 2’ \(\times\) 2’ by 60 step scan with 1-D BSM and 1 telescope scan

For fine adjustment of target peak positions
B-BOP – the far IR imager/polarimeter

- **B-BOP** - imager polarimeter
 - 3 bands with polarization sensitive bolometers
 - 3 bands: 70, 220, 350 µm
 - observe same field simultaneously
 - FPA architecture designed and tested
 - Readout analogous to PACS system
 - European consortium (in statu nascendi)
 - PI M. Sauvage/CEA Saclay
Spiral thermistors with absorbing dipoles
SPICA’s science

Unveiling dusty matter in the universe
Science Objectives – mission design drivers

• What processes govern **star formation across cosmic time**
 - what starts it, controls it, and stops it?
• What are the major physical processes in the most obscured regions of the universe?
• How is this related to the enrichment of the universe with metals

• What is the **origin** and composition of the **first dust**, how does this relate to present day dust processing?

• What is the thermal and chemical **history** of the **building blocks of planets** – connecting planet forming systems with **our own solar system**

• What is the role of magnetic fields in dust filaments?

...all described extensively in the SPICA white papers
High-velocity AGN-driven outflows - Mrk 231

Local $z=0.04$ ULIRG OH spectra (Herschel/PACS)

Dark blue: quiescent gas, light blue: high velocity outflow (1700 km s$^{-1}$, \sim100 M$_{\odot}$ yr$^{-1}$ sr$^{-1}$), dashed light blue: low velocity outflow, green: low excitation

10-30 Jy... Mrk 231 is too bright for SPICA/SAFARI

\rightarrow SPICA will do this for many objects out to $z\sim1.5-2$!
Charting the unknown – SMI LR/CAM surveys

Large area blind survey
- 10 deg$^2 \sim 600$ hr
- 300 x 2 hr/field (10’x12’)
- Galaxy population
- Dust in galaxies
- Stars with debris disks
- ...

→ follow up with SAFARI and SMI/MRS

For comparison:
Area for ~600 hr surveys at similar depth with Spitzer or JWST

PAH galaxies z > 0.5
- 82,000 spectra
 - (14,000 for z ~2-4)

AGNs at z > 1
- 240,000 at 34 μm

MS stars (F, G, K)
- 11,000 spectra
 - ~2000 debris disks >50 zodi.
The first galaxies – H$_2$ and dust at \sim1 Bn yr

Simulated SPICA observations of lensed galaxies at high redshift ($z \sim 8/10$ hr)
- **PAH features readily detected**
- **Shocked H$_2$ lines out to high z**

The long shot: rapidly evolving SiO$_2$ feature produced by Pop III pair-instability supernovae in a 10^6 M$_\odot$ Pop III Star Cluster
(10x magnification/10-hr integration)
HD – probing the mass of planetary disks

- HD 56/112 µm lines in the SAFARI bands
 - Direct tracer of gas mass in PPD’s
 - Opens new domain of disk masses
Ice histories: Pristine versus disk origin

Ices detected in scattered light @ 3μm

Ices in emission @ 40 and/or 60 μm

→ SPICA will probe the history of water ice in hundreds of T Tauri disks

crystalline ice (140 K, reference)
cooldown (formed in warm environment, transported in disk)
direct deposit (formed in situ in disk)
warmup (formed in cold environment, transported in disk)

standard T Tauri disk model from Woitke et al. (2016) with MCMax (Min et al. 2009, 2016) – consistent ice opacities
[Kamp, Scheepstra, Min, Klarmann in prep]
Magnetic fields – driver in star formation in ISM filaments?

Example: Taurus B211 filaments

Herschel 250 μm and PLANCK magnetic field

2.7 deg ~ 3 pc

B-BOP will probe the link between magnetic field, low-density filaments (striations) and dense star-forming filaments

characteristic filament width of 0.1 pc observable out to \(d \sim 350 \text{ pc} \)

not accessible to ALMA, neither to ground-based SCUBA2-Pol, NIKA2-Pol, neither to SOFIA, nor to balloon-borne Super BLAST-Pol
Mineralogy – e.g. debris discs

The mineralogy of micron-sized dust particles in discs directly probes the composition of their parent bodies

- SPICA provides access to the far-IR resonances of several minerals, allowing a precise determination of their composition and structures
- The composition of refractory dust in its exo-comets and make a direct comparison with our Solar System
Solar-System Science with SPICA

Uniquely suited to study the cold outer Solar System, Saturn and out (thermal emission peaks at SAFARI wavelengths)

- Many spectral features unique to SPICA:
 - HD: direct handle on D/H
 - Mg/Fe in silicates (comet atmospheres, asteroids, ...)
 - Water ice: comets, asteroids, ...
- Trans-Neptunian Objects, our “debris disk” (follow-up to Spitzer/Herschel)

- Atmospheres (e.g., Titan, Uranus)

- Mineralogy of, e.g., Saturn Phoebe ring (discovered with Spitzer/MIPS!)
Summary

- **SPICA**: a mid-far infrared space observatory
 - 2.5 m diameter mirror, actively cooled to 8 K
 - *unprecedented sensitivity* in *mid/far IR*
 - SPICA focus: spectroscopy of the obscured universe, straddling the gap between JWST and ALMA

- **SPICA** - joint ESA-JAXA project
 - *Mission* final *selection* – 2021 ~TRL5 milestone
 - *Phase 0/A* - started re-iteration of capabilities and design
 - Science goals/capabilities to be revisited/upgraded
 - → SPICA science conference in Crete next week

www.spica2019.org

SPICA information: **www.spica-mission.org**
P.R.Roelfsema@sron.nl